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Abstract
The ratio f (x) of the ground-state energy of an attractive Fermi gas to that of the
noninteracting Fermi gas is a smooth and continuous function of x = kF a in the
Bardeen–Cooper–Schrieffer (BCS)-unitarity crossover regime −∞ < x � 0.
Here kFh̄ is the Fermi momentum, h̄ is the Planck constant and a is the s-wave
scattering length. The respective coefficients of the perturbation expansions of
f (x) in the BCS regime and in the unitary regime are expected to be related
to each other. Unitary Fermi gases are expected to exhibit universal behaviors.
So f (−∞) is universal and is only a function of the universal coefficients
of the perturbation expansion of f (x) in the BCS regime. Using these facts,
we extend the perturbation expansion of f (x) in the BCS regime to the BCS-
unitarity crossover regime. f (−∞) is predicted to be 0.400 98 (0.422 94) for
the Bose (Fermi) function, which are in good agreement with the quantum
Monte Carlo results and the experimental results.

PACS numbers: 05.30.Fk, 03.75.Hh, 03.75.Ss

1. Introduction

Recent experiments on two-component ultracold atomic Fermi gases near a Feshbach
resonance have realized the crossover from a Bose–Einstein condensate (BEC) to a Bardeen–
Cooper–Schrieffer (BCS) superfluid [1–16]. In these systems the interaction strength can be
varied over a very wide range by magnetically tuning the two-body scattering length. For
a dilute spin-1/2 Fermi gas with the interparticle distance much larger than the interaction
range r0, the interaction is predominantly determined by the s-wave scattering length a [3].
The physically relevant coupling parameter is kF a. Here kFh̄ is the Fermi momentum and
h̄ is the Planck constant. For a > 0, fermionic atoms with opposite spins can form bound
bosonic molecules. At a sufficiently low temperature, these bosonic molecules can condense.
The molecular BEC state for a > 0 can be adiabatically converted into an ultracold Fermi gas
with a < 0. For a < 0, at a sufficiently low temperature, fermionic atoms with opposite spins
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can form pairs and these pairs can condense. For 0 < −kF a � 1, standard BCS theory is
expected to apply.

Of particular interest is the unitary limit kF a → ±∞. The details of the microscopic
interaction include the two-body collisions (the two-body s-wave scattering length a, the
interaction range r0, etc), the three-body collisions and the more-body collisions. Let the
characteristic length of the n-body collision be Rn (n � 3). At unitarity a → ±∞, we have
lima→±∞ r0/a = 0 and lima→±∞ Rn/a = 0, which implies that the details of the microscopic
interaction are lost. Hence unitary Fermi gases with any attractive short-range two-body
interaction are expected to exhibit universal behaviors, which is the universality hypothesis
[1, 2]. Although no rigorous proof of the universality hypothesis exists, the quantum Monte
Carlo calculations [9–11] and the experimental results [12–16] all support this hypothesis.
The universality hypothesis asserts that the only relevant physical parameter for the ground
state is kF and the ratio C of the ground-state energy of a unitary Fermi gas to that of the
noninteracting Fermi gas is a universal quantity. There are many analytical, numerical and
experimental researches for the determination of C. The Padé approximations [1/1] and [2/2]
predict C = 0.326, 0.568, respectively [4, 5]. Here the Padé approximation [L/M] is defined
by

[L/M] = W0 + W1x + · · · + WLxL

1 + V1x + · · · + VMxM
, (1)

where W0,W1, . . . ,WL and V1, . . . , VM are the coefficients.
The ε expansion [6] predicts C = 0.475. The mean-field BCS theory [7] predicts

C = 0.59. The recent mean-field calculation considering quantum fluctuations [8] predicts
C = 0.40. The most reliable estimates are the quantum Monte Carlo results: C = 0.44 ±
0.01 [9], 0.42 ± 0.01 [10], 0.40 ± 0.01 [11]. The four recent experimental results are
C = 0.36 ± 0.15 [13], 0.51 ± 0.04 [14], 0.46 ± 0.05 [15] and 0.46+0.05

−0.12 [16]. In this paper,
we will propose a new approach to the present problem.

2. Basic approach

The ground-state energy E0 of a spin-1/2 dilute Fermi gas with attractive short-range two-body
potential is a function of kF a,

E0 = N
3

10

h̄2k2
F

m
f (kF a), (2)

where kF = (3π2N/V )1/3,m is the mass of a fermion, N is the number of fermions and
V is the volume of the system. For a dilute Fermi gas, only the two-body collisions are
important. Since the ground-state energy is low, usually only the s-wave scattering is important,
which is completely determined by the scattering length a. So f (x) depends predominantly on
x = kF a. Of course, f (x) also depends weakly on kF r0 and kF Rn (n � 3). Therefore f (x)

is an almost universal function of x and is weakly dependent on the details of the microscopic
interaction. Although f (x) is not known, f (x) must satisfy some conditions.

In the BCS regime 0 < −x � 1, the superfluid contribution to the ground-state energy is
exponentially small and is negligible [1]. Hence f (x) is essentially identical to the perturbation
series of a dilute spin-1/2 Fermi gas with repulsive short-range two-body potential [17, 18],
with x < 0, i.e.,

f (x) = 1 +
∞∑

j=1

bjx
j , 0 � −x � 1. (3)

2
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where b1 = 10/9π and b2 = 4(11 − 2 ln 2)/21π2 [17] are independent of the details of the
interaction potential and hence are universal, bj (j � 3) are not universal and are dependent on
the details of the interaction potential [1]. For an attractive zero-range square-well potential,
Baker [4] obtained b3 = 0.030 4667 and b4 = −0.062 0133.

For dilute Bose gases with short-range repulsive potential, there are also non-universal
effects [19–22],

E0 = N
2πh̄2

m
ρa[1 + A1(ρa3)1/2 + A2ρa3 ln(ρa3) + A3ρa3 + · · ·], ρa3 � 1 (4)

where ρ = N/V,A1 = 128/15
√

π and A2 = 8(4π/3 − √
3) are universal, A3 and higher

coefficients are not universal.
Equation (4) is a low-density expansion of a repulsive Bose gas. The first term was

obtained by Lenz [19]. The second term was obtained by Lee et al [20]. The third term
was obtained by Wu [21]. Hugenholtz and Pines [22] showed that the coefficients of the
higher-order terms are not universal and are dependent on the details of the potential.

Let us explain why b1, b2, A1 and A2 are universal numbers while higher coefficients
are not universal numbers. The reason is that for dilute Fermi and Bose gases, only the
two-body collisions are important. Since the ground-state energy is low, usually only the
s-wave scattering is important, which is completely determined by the scattering length a.
So the low-order terms depend only on (N/V )1/3a. Hence b1, b2, A1 and A2 are universal
numbers. However, the higher-order terms not only depend on (N/V )1/3a, but also depend
on (N/V )1/3r0 and (N/V )1/3Rn (n � 3). So bj and Aj (j � 3) are not universal numbers.

In the unitary regime −x � 1, 1/x is small. Therefore f (x) is expected to be expanded
as a power series in 1/x, i.e.,

f (x) = C +
∞∑

j=1

Cj

xj
, −x � 1. (5)

where C and Cj are constants. The universality hypothesis asserts that C = f (−∞) is a
universal quantity.

In the unitary regime −x � 1, the ε expansion [23] gives f (x) = 0.475 − 0.884/x −
0.833/x2, which supports the perturbation expansion equation (5).

The BCS–BEC crossover of a Fermi gas with attractive short-range two-body interaction
is smooth. f (x) is a smooth and continuous function of x in the BCS-unitarity crossover
regime −∞ < x � 0. The perturbation expansions of f (x) in the BCS regime and in the
unitary regime are different portions of a single continuous curve. So the coefficients C and
C1, C2, . . . , Cj , . . . of the perturbation expansion of f (x) in the unitary regime are expected
to be related to the coefficients b1, b2, . . . , bn, . . . of the perturbation expansion of f (x) in
the BCS regime, i.e., C = C(b1, b2, . . . , bn, . . .) and Cj = Cj(b1, b2, . . . , bn, . . .). However,
b1, b2 and C are universal quantities. So C is independent of the non-universal quantities bn

(n � 3) and is only dependent on b1 and b2, i.e., C = C(b1, b2), which is the universality
condition.

In order to extend the perturbation expansion equation (3) in the BCS regime to the BCS-
unitarity crossover regime, let us construct a function that can be expanded as a power series
in x for small x and in 1/x for large x, respectively, i.e.,

�θ(αx) =
∫ ∞

0
yθ−1G(y)eαxy dy, −∞ < x � 0, α > 0, θ � 1 (6)

with

�θ(αx) =
∞∑

j=0

�θ+j (0)

j !
(αx)j , 0 < −αx � 1 (7)

3
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�θ(αx) =
∞∑

j=0

�(θ + j)G(j)(0)

j !

1

(−αx)θ+j
, −αx � 1 (8)

where G(y) is not known. For 0 < y � 1,G(y) is required to be expanded as a power series
in y, i.e., G(y) = ∑∞

j=0 G(j)(0)yj /j !, with G(j)(0) �= 0. For y � 1,G(y) is required to be
so small that the integral

∫ ∞
0 yθ−1G(y)dy = �θ(0) is convergent.

Here it is necessary that �θ should include a parameter α. The role played by α is that
through α, the respective coefficients of the two expansions of �θ(αx) for small x and for
large x are related to each other.

In equation (3), we replace bj by
∑∞

n=j Anj�n(αx), which gives

f (x) = 1 +
∞∑

j=1

xj

∞∑
n=j

Anj�n(αx), −∞ < x � 0 (9)

with

b1 =
∞∑

n=1

An1�n(0), b2 =
∞∑

n=1

(An+1,2 + αAn1)�n+1(0), (10)

C =
∞∑

n=1

Ann(n − 1)!G(0)
1

(−α)n
. (11)

where Anj are constants.
Substituting equation (10) into the universality condition C = C(b1, b2), we obtain

C = C({An1, An2}). Equation (11) gives C = C({Ann}). Comparing the resulting two
equations, we obtain C = C(A11, A22), An1 = 0, (n � 2), An2 = 0, (n � 3), Ann = 0,
(n � 3) and

f (x) = 1 + A11x�1(αx) + A22x
2�2(αx) +

∞∑
j=3

xj

∞∑
n=j+1

Anj�n(αx). (12)

It is reasonable to require that f (x) satisfy the condition of the uniqueness of the solution,
i.e., the coefficients A11, A22, A43, . . . in equation (12) as well as C and C1, C2, . . . , Cj , . . .

be uniquely determined by the coefficients b1, b2, . . . , bn, . . . . This gives

Anj = 0 (n �= 2j − 2), C = C(b1, b2), Cn = Cn(b1, b2, . . . , bn+2),

f (x) = 1 + A11x�1(αx) + A22x
2�2(αx) +

∞∑
j=3

A2j−2,j x
j�2j−2(αx), (13)

A11 = b1

�1(0)
, A22 = b2

�2(0)
− b1α

�1(0)
, C = 1 − 2b1G(0)

�1(0)α
+

b2G(0)

�2(0)α2
.

Since the ground-state energy is an absolute minimum, the parameter α is determined by
the minimum condition ∂C/∂α = 0, which gives

α = �1(0)b2

�2(0)b1
, A22 = 0, C = 1 − G(0)�2(0)b2

1

[�1(0)]2b2
, (14)

f (x) = 1 + A11x�1(αx) +
∞∑

j=3

A2j−2,j x
j�2j−2(αx), (15)

4
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with

f (x) = 1 + A11�1(0)x + A11α�2(0)x2 +
∞∑

n=3

⎡
⎣A11α

n−1

(n − 1)!
�n(0)

+
n∑

j=3

A2j−2,j α
n−j

(n − j)!
�n+j−2(0)

⎤
⎦ xn, 0 < −x � 1 (16)

f (x) = 1 − A11G(0)

α
+

∞∑
n=1

⎡
⎣A11G

(n)(0)

(−α)1+n

+
n+2∑
j=3

A2j−2,j

(n + 2 − j)!(−α)n+j
�(n + j)G(n+2−j)(0)

⎤
⎦ 1

xn
, −x � 1. (17)

From the above we see that through replacing bj in equation (3) by
∑∞

n=j Anj�n(αx), we
extend the small-x expansion of f (x) in the BCS regime to the BCS-unitarity crossover regime.
Indeed, the replacement leads to equation (15) with the two expansion equations (16) and (17),
which are the required results.

3. Predictions and comparison

3.1. Determination of G(y)

G(y) is not known. There exists an infinity of possible functions of G(y) that satisfy the
requirements stated. In order to find some hints to determine G(y), let us recall that for a
solid, the phonon frequency distribution function g(ω) can be expanded as a power series in
ω2 for small frequency ω [24, 25], i.e.,

g(ω) =
∞∑

j=1

ηjω
2j , ω ∼ 0 (18)

where ηj are constants. At a sufficiently low temperature, the energy E(T ) of a solid (an ideal
Bose gas of phonons) is given by

E(T ) = E(0) +
∞∑

j=1

ηjh̄

(
kBT

h̄

)2j+2 ∫ ∞

0

y2j+1

ey − 1
dy, T ∼ 0 K, (19)

where kB is the Boltzmann constant and T is the absolute temperature.
At a sufficiently low temperature, the energy E(T ) of an ideal spin-1/2 Fermi gas [26] is

given by

E(T ) = 3

5
Nμ

⎡
⎣1 +

∞∑
j=0

wj

(
kBT

μ

)2j+2 ∫ ∞

0

y2j+1

ey + 1
dy

⎤
⎦ , T � μ/kB, (20)

where wj = [5/(2j + 1)!]
∏j−1

i=0 (3/2 − i) and μ is the chemical potential.
We see that the coefficients of the low-temperature expansions of the energies of a solid

(an ideal Bose gas of phonons) and of an ideal Fermi gas are proportional to the Bose
integral

∫ ∞
0 yz−1(ey − 1)−1 dy = �(z)ζ(z) and the Fermi integral

∫ ∞
0 yz−1(ey + 1)−1 dy =

(1 − 21−z)�(z)ζ(z), respectively. The coefficients of the small-x expansion equation (16) of

5
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f (x) are linear combinations of �θ(0). There are remarkable similarities between the small-x
expansion of f (x) and the low-temperature expansions. Hence it is expected that the best
approximation of �θ(0) should be the Bose or Fermi integral, i.e., the best approximation
of G(y) should be either the Bose function G(y) = y/(ey − 1) or the Fermi function
G(y) = 1/(ey + 1).

Here we draw an analogy between the small-x expansion of f (x) and the low-temperature
expansions of the energies of solids (ideal Bose gases of phonons) and of ideal Fermi gases.
The reason is that the low-temperature expansions involve the Riemann ζ function, which
is one of the fundamental functions in nature. It is expected that the best approximation of
�θ(αx) should also involve the Riemann ζ function.

3.2. Bose function

For the Bose function, we obtain

�θ(αx) = �(θ + 1)ζ(θ + 1, 1 − αx), α = π(11 − 2 ln 2)

70ζ(3)
= 0.358 937,

A11 = 20

3π3
= 0.215 01, C = 1 − 1400ζ(3)

3π4(11 − 2 ln 2)
= 0.400 98,

(21)

where ζ(t, s) is the Riemann ζ function [27]

ζ(t, s) = 1

�(t)

∫ ∞

0

yt−1e−(s−1)y

ey − 1
dy =

∞∑
j=0

1

(j + s)t
, t > 1, s > 0. (22)

Using Baker’s results b3 = 0.030 4667 and b4 = −0.062 0133 [4], we obtain

f (x) = 1 + 0.215 01xζ(2, 1 − 0.358 937x)

− 0.057 3593x3ζ(5, 1 − 0.358 937x) + 0.001 4614x4ζ(7, 1 − 0.358 937x)

+
∞∑

j=5

A2j−2,j�(2j − 1)xj ζ(2j − 1, 1 − 0.358 937x). (23)

3.3. Fermi function

For the Fermi function, we obtain

�θ(αx) = �(θ)[ζ(θ, 1 − αx) − 21−θ ζ(θ, 1 − αx/2)],

A11 = 10

9π ln 2
= 0.510 249, α = 72(11 − 2 ln 2) ln 2

35π3
= 0.442 111,

C = 1 − 175π2

648(11 − 2 ln 2)(ln 2)2
= 0.422 94.

Using Baker’s results b3 = 0.030 4667 and b4 = −0.062 0133 [4], we obtain

f (x) = 1 + 0.510 249x�1(0.442 111x) − 0.010 4622x3�4(0.442 111x)

+ 0.000 035 0405x4�6(0.442 111x) +
∞∑

j=5

A2j−2,j x
j�2j−2(0.442 111x). (25)

6
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Table 1. The ground-state energy f (kF a) in units of N3k2
F /10m.

kF a MC1 MC2 (23)(2) (25)(2) (23)(3) (25)(3) (23)(4) (25)(4)

−1/6 0.94(1) 0.9458 0.9458 0.9460 0.9460 0.9460 0.9460
−1/4 0.92(1) 0.9219 0.9219 0.9225 0.9225 0.9225 0.9225
−1/2 0.87(1) 0.8604 0.8604 0.8637 0.8637 0.8638 0.8638
−1 0.79(2) 0.7705 0.7706 0.7838 0.7837 0.7840 0.7842
−2.5 0.72(3) 0.65 0.6295 0.6311 0.6720 0.6729 0.6726 0.6747
−5 0.62(3) 0.56 0.5385 0.5434 0.5947 0.5995 0.5955 0.6015
−10 0.48 0.4768 0.4867 0.5257 0.5355 0.5262 0.5367
−∞ 0.42(1) 0.40 0.400 98 0.422 94 0.400 98 0.422 94 0.400 98 0.422 94

3.4. Predictions and comparison

The quantum Monte Carlo results [10] (MC1) and [11] (MC2) are listed in table 1. The
first two, three and four terms of equations (23) and (25) are represented by (23)(2), (23)(3),
(23)(4), (25)(2), (25)(3) and (25)(4), respectively and are listed in table 1. We see that the
main contributions to f (x) come from the first two terms, which reflects the fact that f (x)

is predominantly dependent on x = kF a and is an almost universal function of x. The third
term makes a little contribution to f (x) and the fourth term makes almost no contribution to
f (x), which reflects the fact that f (x) also depends weakly on the details of the microscopic
interaction. Hence almost all the contributions to f (x) come from the first three terms. The
predictions of the Bose function and of the Fermi function are very close to each other and are
in good agreement with the simulation results. Furthermore, the higher-order approximations
are in better agreement with the simulation results than the lower-order approximations.

4. Conclusion

The BCS–BEC crossover of a Fermi gas with attractive short-range two-body potential is
smooth. The ratio f (x) of the ground-state energy to that of the noninteracting Fermi gas
is a smooth and continuous function of x = kF a in the BCS-unitarity crossover regime
−∞ < x � 0. So the respective coefficients of the perturbation expansions of f (x) in
the BCS regime and in the unitary regime are expected to be related to each other. At
unitarity, the details of the microscopic interaction are lost. Unitary Fermi gases are expected
to exhibit universal behaviors. Hence f (−∞) is universal and is only a function of the
universal coefficients of the perturbation expansion of f (x) in the BCS regime. Using these
facts, we extend the perturbation expansion of f (x) in the BCS regime to the BCS-unitarity
crossover regime. The resulting expansion of f (x) in the BCS regime is analogous to the low-
temperature expansions of the energies of solids (ideal Bose gases of phonons) and of ideal
Fermi gases, which involve the Bose and Fermi integrals, respectively. It is natural to expect
that the best approximation of f (x) should involve the Bose or Fermi integral. f (−∞) is
predicted to be 0.40098(0.42294) for the Bose (Fermi) function, which are in good agreement
with the quantum Monte Carlo results and the experimental results.
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